English, asked by Minimoni, 10 months ago

factorise x^2 + 6x - 10 = 0 using formula​

Answers

Answered by InfiniteSoul
3

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 + 6x - 10 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = 6

☯ c = -10

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (6)^2 - 4 \times 1 \times -10

\sf\implies D = 36 + 40

\sf\implies D = 76

\sf{\underline{\boxed{\blue{\large{\bold{ D = 76}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( 6)  \pm\sqrt {76} }{2\times 1 }

\sf\implies x = \dfrac{ -6 \pm 2\sqrt{19} }{2}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -6 - 2\sqrt{19}}{ 2 }

\implies x = {-3 -\sqrt{19}}

\sf{\underline{\boxed{\purple{\large{\bold{ x = -3 - \sqrt{19} }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -6 + 2\sqrt{19} }{ 2 }

\implies x = -3 +2\sqrt{19}

\sf{\underline{\boxed{\purple{\large{\bold{ x = -3 + \sqrt{19}}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = -3 -\sqrt{19}  \: or \:-3 + \sqrt{19}}}}}}}

Similar questions