Factorise: x^2+ y^2- z^2 - 2 xy
Answers
Answered by
18
Step-by-step explanation:
(x 2 −2xy+y 2 )−z 2
⇒[x(x−y)−y(x−y)]−z 2
⇒(x−y)(x−y)−z 2
⇒(x−y) 2 −z 2
⇒[(x−y)+z][(x−y)−z]
⇒(x−y+z)(x−y−z)
Answered by
4
Answer:
x² + y² - z² - 2xy = (x - y - z) (x - y + z)
Step-by-step explanation:
• TO FACTORISE :
x² + y² - z² - 2xy
• CONCEPT USED :
(x + y)² = x² + y² + 2xy
(x - y)² = x² + y² - 2xy
(x + y) (x - y) = x² - y²
• SOLUTION :
x² + y² - z² - 2xy
= x² + y² - 2xy - z²
= (x - y)² - z² [ ∵ (x - y)² = x² + y² - 2xy ]
= (x - y - z) {x - y - (-z)} [ ∵ (x + y) (x - y) = x² - y² ]
= (x - y - z) (x - y + z)
HOPE IT HELPS YOU !
THANKS !
Similar questions