Factorise x^3 - 2x^2 - x +2
Answers
Answered by
2
Explanation:
#x^3-2x^2-x+2#
#=x^3-x-2x^2+2#
Grouping the #1^(st# #2# terms together and the #2^(nd# #2# together:
#=x(x^2-1)-2(x^2-1)#
#=(x^2-1)(x-2)#
Using the identity: #a^2-b^2=(a+b)(a-b)#
#=(x^2-1^2)(x-2)#
factor as follows:
#x^3-2x^2-x+2#
When replacing 1,
#=>1^3-2xx1^2-1+2#
#=>cancel1-cancel2-cancel1+cancel2#
#=>0#
So, we get #(x-1)# as factor.
Then by long division, divide #(x-1)# by #(x^3-2x^2-x+2)#
You get#=>(x-1)(x^2-x-2)#
Then you have to factorize it by splitting the middle term method.
#=>(x-1)[x^2+x-2x-2]#
#=>(x-1)[x(x+1)-2(x+1)]#
#color(magenta)(=>(x-1)(x+1)(x-2)#
~Hope this helps! :)
Answered by
6
Answer:
(or) (or)
Similar questions
English,
5 months ago
India Languages,
10 months ago
CBSE BOARD XII,
10 months ago
Social Sciences,
1 year ago
Science,
1 year ago