Math, asked by harinim370, 9 months ago

factorise x^4+1/x^4+1

Attachments:

Answers

Answered by spiderman2019
26

Answer:

Step-by-step explanation:

x⁴ + 1/x⁴ + 1

=> (x²)² + (1/x²)² + 1

=> (x² + 1/x²)² - 2 + 1

=> (x² + 1/x²)²  - 1

=> (x² + 1/x² - 1) (x² + 1/x² + 1)

=> (x² + 1/x² - 1) ( (x+1/x)² - 1)

=> (x² + 1/x² - 1)( x+1/x + 1)(x + 1/x - 1)

Answered by syed2020ashaels
3

x^{4}+\frac{1}{x^{4} } +1 can be factorized as (x+\frac{1}{x}+1)( x+\frac{1}{x}-1)((x-\frac{1}{x}) ^{2} +1)\\\\\\.

Step-by-step explanation:

  • Here the given polynomial expression is, x^{4}+\frac{1}{x^{4} } +1.
  • Now, x^{4} and \frac{1}{x^{4} } can also be written as (x^{2} )^{2} and \frac{1}{(x^{2}) ^{2} }
  • Therefore, the polynomial expression becomes (x^{2} )^{2}+\frac{1}{(x^{2}) ^{2} } +1
  • Now, we know the well known algebraic identity that is (a-b)^{2} = a^{2}+b^{2}-2ab\\= > (a-b)^{2}- 2ab= a^{2}+b^{2}
  • Applying this identity in the polynomial given in the problem, we get,

        (x^{2} +\frac{1}{x^{2} } )^{2} - 2x*\frac{1}{x} +1\\=(x^{2} +\frac{1}{x^{2} } )^{2} -2+1\\=(x^{2} +\frac{1}{x^{2} } )^{2} -1....(1)

  • Now, we know the well known algebraic identity that is

       a^{2}-b^{2}  = (a+b)*(a-b)

  • Applying this formula to the polynomial in (1), we get,

       (x^{2} +\frac{1}{x^{2} } )^{2} -1 \\=((x^{2} +\frac{1}{x^{2} } )+1)*((x^{2} +\frac{1}{x^{2} } )-1)

       where a= x^{2} +\frac{1}{x^{2} } and b= 1.

  • Again, applying the identity (a-b)^{2} = a^{2}+b^{2}-2ab\\= > (a-b)^{2}- 2ab= a^{2}+b^{2} , we get,

       ((x+\frac{1}{x}) ^{2} -2x\frac{1}{x} +1)((x+\frac{1}{x}) ^{2} -2x\frac{1}{x} -1)\\= ((x+\frac{1}{x}) ^{2} -2+1)((x-\frac{1}{x}) ^{2} +2-1)\\\\=((x+\frac{1}{x}) ^{2} -1)((x-\frac{1}{x}) ^{2} +1)\\\\\\=((x+\frac{1}{x}) ^{2} -1^{2} )((x-\frac{1}{x}) ^{2} +1)\\\\\\\\=(x+\frac{1}{x}+1)( x+\frac{1}{x}-1)((x-\frac{1}{x}) ^{2} +1)\\\\\\

Hence, x^{4}+\frac{1}{x^{4} } +1 can be factorized as (x+\frac{1}{x}+1)( x+\frac{1}{x}-1)((x-\frac{1}{x}) ^{2} +1)\\\\\\.

Learn more factorizations

https://brainly.in/question/21200528?msp_srt_exp=5

Learn more here

https://brainly.in/question/10992970?msp_srt_exp=5

Similar questions