Math, asked by Pranabamuni302, 8 months ago

Factorise x^4+x^3+2x^2+4x-8 using factor theorem

Answers

Answered by ERB
0

Answer:

(x-1)(x+2)(x²+4)

Step-by-step explanation:

let, f(x)= x^4+x^3+2x^2+4x-8

here, f(1)= 1^4+1^3+2\times1^2+4\times1-8

               = 1+1+2+4-8

               = 8-8

               =0

so,\  x-1 \ \ is \ a \ factor \ of \ f(x)

now, f(x)= x^4+x^3+2x^2+4x-8

= x^4-x^3+2x^3-2x^2+4x^2-4x+8x-8

= x^3(x-1)+2x^2(x-1)+4x(x-1)+8(x-1)

=(x-1)(x^3+2x^2+4x+8)

=(x-1)(x^2(x+2)+4(x+2))

=(x-1)(x+2)(x^2+4)

Similar questions