Math, asked by saikatzmr, 9 months ago

factorise: -
x^8+x^4/16+1/256

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\mathsf{x^8+\dfrac{x^4}{16}+\dfrac{1}{256}}

\underline{\textsf{To find:}}

\textsf{Factor of}\;\mathsf{x^8+\dfrac{x^4}{16}+\dfrac{1}{256}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{x^8+\dfrac{x^4}{16}+\dfrac{1}{256}}

\textsf{This can be written as}

\mathsf{=(x^8+2\dfrac{x^4}{16}+\dfrac{1}{256})-\dfrac{x^4}{16}}

\textsf{Using the identity,}

\boxed{\mathsf{a^2+2ab+b^2=(a+b)^2}}

\mathsf{=(x^4+\dfrac{1}{16})^2-\dfrac{x^4}{16}}

\mathsf{=(x^4+\dfrac{1}{16})^2-(\dfrac{x^2}{4})^2}

\textsf{Using the identity,}

\boxed{\mathsf{a^2-b^2=(a-b)(a+b)}}

\mathsf{=(x^4+\dfrac{1}{16}-\dfrac{x^2}{4})\,(x^4+\dfrac{1}{16}+\dfrac{x^2}{4})}

\underline{\textsf{Answer:}}

\mathsf{x^8+\dfrac{x^4}{16}+\dfrac{1}{256}=(x^4+\dfrac{1}{16}-\dfrac{x^2}{4})\,(x^4+\dfrac{1}{16}+\dfrac{x^2}{4})}

Find more:

1.x^2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404#

2.Factorise x^4-(x-z)^4​

https://brainly.in/question/14993176

3.a^4+b^4-7a^2b^2 factorise​

https://brainly.in/question/8387647

4.Factorise the term p^4-256

https://brainly.in/question/1356541

5.Factorise a^3b^3-9a^2b^2+20ab

hey mate its urgent please solve this it is very urgent ​

https://brainly.in/question/19202537

Answered by Debom
4

Answer:

Mark me as brainlist

and 12 thanks also.

Attachments:
Similar questions