Math, asked by anilsahu3019, 3 months ago

factorise :- x² + 1/x² - 2 - 3x + 3/x
In Details ​

Answers

Answered by mathdude500
1

\large\underline{\bold{Given \:Question - }}

  \sf \: Factorize :  \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  - 2 - 3x + \dfrac{3}{x}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  - 2 - 3x + \dfrac{3}{x}

 \:  \:  \:  \:  =  \:  \rm  \:  \: \:   \bigg({x}^{2}  + \dfrac{1}{ {x}^{2} } \bigg)  -  3 \bigg(x  -  \dfrac{1}{x} \bigg) - 2

 \bigg \{\sf \: Let \: x - \dfrac{1}{x}  = y \\  \sf \: squaring \: both \: sides  \\  \sf \:  {\bigg(x  -  \dfrac{1}{x}  \bigg) }^{2} =  {y}^{2} \\  \sf \:  {x}^{2} +  \dfrac{1}{ {x}^{2} }  - 2 =  {y}^{2}   \\  \sf \:  {x}^{2} +  \dfrac{1}{ {x}^{2}} =  {y}^{2}  + 2 \bigg \}

 \:  \:  \:  \:  =  \:  \rm  \:  \:  ({y}^{2}   +  2) - 3y - 2

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {y}^{2}   +  2 - 3y - 2

 \:  \:  \:  \:  =  \:  \rm  \:  \:  {y}^{2}  - 3y

 \:  \:  \:  \:  =  \:  \rm  \:  \: y(y - 3)

 \:  \:  \:  \:  =  \:  \rm  \:  \: \bigg(x - \dfrac{1}{x}\bigg) \bigg(x - \dfrac{1}{x}  - 3  \bigg)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \because \: y \:  =  \: x - \dfrac{1}{x} }

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions