Math, asked by gkleads8always, 4 months ago

Factorise:
x²+6x+8

x²-7x+12​

Answers

Answered by BeautifulWitch
1

Answer:

 \red{Given  \: that : }

  \green{ {x}^{2}  + 6x + 8}

  \red{split \: middle \: term : }

  \green{ {x}^{2}  + 4x + 2x + 8}

  \red{ group \: pair \: of \: terms : }

   \green{ ({x}^{2}  + 4x) +( 2x + 8)}

 \red{factor \: each \: binomials :}

 \green{ x(x  + 4)+ 2(x + 4)}

 \red{factor \: out \: common \: factor \:(x + 4) }

 \green{( x+ 2)(x + 4)}

{ \red{hence \: factors \: of \:  {x}^{2}  + 6x + 8 \: are \: }}

 \huge {\boxed{ \green{ (x+ 2)(x + 4)}}}

\pink{Given  \: that : }

  \blue{ {x}^{2}  + 7x + 12}

 \pink{split \: middle \: term : }

\blue{ {x}^{2}  + 3x + 4x + 12}

  \pink{ group \: pair \: of \: terms : }

   \blue{ ({x}^{2}  + 3x) +( 4x + 12)}

\pink{factor \: each \: binomials :}

 \blue{ x(x  + 3)+ 4(x + 12)}

\pink{factor \: out \: common \: factor \:(x + 3) }

 \blue{( x+ 3)(x + 4)}

{ \pink{hence \: factors \: of \:  {x}^{2}  + 7x + 12 \: are \: }}

\huge {\boxed{ \blue{ (x+ 3)(x + 4)}}}

Step-by-step explanation:

Hope this helps you ✌️

Similar questions