Math, asked by Sniperman, 1 year ago

Factorise x³/8-64-3x²+24x by using suitable identity​

Answers

Answered by legendarygamer70804
22

Answer:

Step-by-step explanation:

Check in the below attachment for the solution

Hope this helps you!

Attachments:
Answered by hukam0685
3

Factors are \bf \frac{ {x}^{3} }{8}  - 64 - 3 {x}^{2}  + 24x  =  \left( { \frac{x}{2}  - 4} \right)^{3}  \\

Given:

  •  \frac{ {x}^{3} }{8}  - 64 - 3 {x}^{2}  + 24x \\

To find:

  • Factorise using suitable identity.

Solution:

Identity to be used:

\bf ( {a - b)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3 {a}^{2} b + 3a {b}^{2}  \\

Step 1:

Rewrite the terms of given expression; so that identity can be applicable.

\frac{ {x}^{3} }{8}  - 64 - 3 {x}^{2}  + 24x  \\= \left( { \frac{x}{2} }\right)^{3}  - ( {4)}^{3} - 3\left( { \frac{x}{2} }\right)^{2} \times 4 + 3  \times \frac{x}{2}  \times  {4}^{2}  \\

Step 2:

On comparison with the identity; It is clear that

\bf a =  \frac{x}{2}  \\

and

\bf b = 4 \\

So,

\frac{ {x}^{3} }{8}  - 64 - 3 {x}^{2}  + 24x  =  \left( { \frac{x}{2}  - 4} \right)^{3}  \\

Thus,

Factors are \bf \frac{ {x}^{3} }{8}  - 64 - 3 {x}^{2}  + 24x  =  \left( { \frac{x}{2}  - 4} \right) \left( { \frac{x}{2}  - 4} \right) \left( { \frac{x}{2}  - 4} \right) \\

Learn more:

1) If x2+1/x2=83 find the value of x3-1/x3

https://brainly.in/question/1403212

2)FACTORISE : 125p^3-216q^3

https://brainly.in/question/19289994

Similar questions