Math, asked by oliver27, 4 months ago

factorization of x²-42-8=0​

Answers

Answered by diyasharma38
1

answer : x=52 , -52

Step-by-step explanation:

Subtract 8 from -42

x²-50=0

x²-50=0

x²=50

x²-50=0x²=50x=±√50

x²-50=0x²=50x=±√50x=±5√2

ANSWER : x=52 , -52

hope you're satisfied buddy :)

Answered by markmichel90
0

Answer:

x^{2} -42-8=0\\x^{2}-50=(x+\sqrt{50})(x-\sqrt{50})

Step-by-step explanation:

Using quadratic formula:

x = \frac{-b+\sqrt{b^{2} -4*a*c}}{2*a} , \frac{-b-\sqrt{b^{2} -4*a*c}}{2*a}

Where in a general polynomial,

ax^{2} + bx + c = 0

Thus, for the polynomial in question, a = 1, b = 0, c = (-42-8) = -50. Substituting into the two expressions for x yields:

x = \frac{-(0)+\sqrt{(0)^{2} -4*1*(-50)}}{2*1} , \frac{-(0)-\sqrt{(0)^{2} -4*1*(-50)}}{2*1}

x = (+\sqrt{50}  , -\sqrt{50})\\\\ x^{2} -42-8 = x^{2} -50 = (x+\sqrt{50})(x-\sqrt{50})

Similar questions