factorize (1) : a³b-a²b +5ab-5b (2) :a²+ab(b+1)+b³ (3) : a²x²+(ax²+1) x+a
Answers
Answer:
1) b (a² + 5) (a - 1)
2) (a + b) (a + b²)
3) (ax² + 1) (a + x)
Step-by-step explanation:
Given :
To factorize :
1) a³b - a²b + 5ab - 5b
2) a² + ab(b+1) + b³
3) a²x² + (ax² + 1) x + a
Solution :
1) a³b - a²b + 5ab - 5b
⇒ b ( a³ - a² + 5a - 5)
⇒ b[a² ( a - 1 ) + 5 ( a - 1 )]
⇒ b (a² + 5) (a - 1)
2) 2) a² + ab(b+1) + b³
⇒ a² + ab² + ab + b³
⇒ a ( a + b²) + b ( a + b²)
⇒ (a + b) (a + b²)
3) a²x² + (ax² + 1) x + a
⇒ a²x² + ax³ + x + a
⇒ ax² ( a + x ) + 1 (a + x)
⇒ (ax² + 1) (a + x)
Answer:
1) b (a²+5) (e-1)
2) (a + b)(a + b)
3) (ax² + 1)(a + x)
Step-by-step explanation:
Given:
To factorize :
1) a²b-a²b5eb-5b
2) a² + ab(b+1) + b²
3) a²x² + (ax² +1)x+m
Solution:
1) a³ba³b5ab5b
→ b (a²-a² + 5a - 5)
b[a (a-1)+5 (0-1)]
b(a² + 5) (-1)
2) 2) a² + ab(b+1) + b²
8²ab² + ab + b³
a(a+b)+b(a+b³)
- (a + b)(a + b²³)
3) a²x² + (ax² +1)x+a
a²x²+x²+x+a
→ ax² (a+x)+1(a + x) → (ax² + 1)(a + x)