Math, asked by prashantasethi51821, 11 months ago

Factorize a^2-4b^2+a^3-8b^3-(a-2b)^2

Answers

Answered by harendrachoubay
33

The factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(a^{2}+4b^{2}+2ab+4b).

Step-by-step explanation:

We have,

To factorise the given expression = ?

a^2-4b^2+a^3-8b^3-(a-2b)^2

=(a^2-4b^2)+(a^3-8b^3)-(a-2b)^2

=[a^2-(2b)^2)]+[a^3-(2b)^3]-(a-2b)^2

=(a+2b)(a-2b)+(a-2b)(a^{2} +2ab+4b^{2})-(a-2b)^2

Using algebraic identity,

a^{2} -b^{2} =(a+b)(a-b) and

a^{3} -b^{3} =(a-b)(a^2+ab+b^2)

Taking (a -2b) as common, we get

=(a-2b)[(a+2b)+(a^{2} +2ab+4b^{2})-(a-2b)]

=(a-2b)[a+2b+a^{2} +2ab+4b^{2}-a+2b]

=(a-2b)[4b+a^{2} +2ab+4b^{2}]

[tex]=(a-2b)(a^{2}+4b^{2}+2ab+4b)

Hence, the factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2 is (a-2b)(a^{2}+4b^{2}+2ab+4b).

Answered by ramcsrivastava
4

Step-by-step explanation:

Similar questions