Factorize a^3+b^3+c^3-3abc by factor theorem? (a+b+c=0)
Answers
Answered by
41
a³ + b³ + c³ -3abc
=a³ + (b³ + c³) -3abc
= a³ + (b +c)³ -3bc(b+c) -3abc
[ given, a+ b + c =0 => b+c = -a put it ]
= a³ + (b+c)³ -3bc(-a) -3abc
= a³ + (b + c)³ +3abc -3abc
[ use, formula , x³ + y³ = (x + y)(x² + y² -xy )
= {a + (b + c)}{a² + (b+c)² -a(b + c)}
=(a + b + c)(a² + b² + c² + 2bc - ab - ac)
=a³ + (b³ + c³) -3abc
= a³ + (b +c)³ -3bc(b+c) -3abc
[ given, a+ b + c =0 => b+c = -a put it ]
= a³ + (b+c)³ -3bc(-a) -3abc
= a³ + (b + c)³ +3abc -3abc
[ use, formula , x³ + y³ = (x + y)(x² + y² -xy )
= {a + (b + c)}{a² + (b+c)² -a(b + c)}
=(a + b + c)(a² + b² + c² + 2bc - ab - ac)
Lipimishra2:
Thank you. ^^
Answered by
8
Answer:
Step-by-step explanation:
Given :
To find : Factorize by factor theorem?
Solution :
Solve the expression using factor theorem,
Substitute,
Using formula,
Using formula,
Therefore,
Similar questions