FACTORIZE: The equation given above in the picture. Please solve it quickly.
Attachments:
Answers
Answered by
1
Solution :
*************************************
We know that ,
If x + y + z = 0 then
x³ + y³ + z³ = 3xyz
****************************************
i ) Let x = a²-b² , y = b²-c² , z = c² - a²
x + y + z
= a² - b² + b² - c² + c² - a²
= 0
Therefore ,
(a²-b²)³+(b²-c²)³+(c²-a²)³
= 3(a²-b²)(b²-c²)(c²-a²) ----( 1 )
ii ) Similarly ,
(a-b)³+(b-c)³+(c-a)³ = 3(a-b)(b-c)(c-a)---(2)
Now ,
[(a²-b²)³+(b²-c²)³+(c²-a²)³]/[(a-b)³+(b-c)³+(c-a)³]
= [3(a²-b²)(b²-c²)(c²-a²)]/[3(a-b)(b-c)(c-a)]
= (a+b)(b+c)(c-a)
[ Since , x² - y² = ( x + y )( x - y ) ]
••••••
*************************************
We know that ,
If x + y + z = 0 then
x³ + y³ + z³ = 3xyz
****************************************
i ) Let x = a²-b² , y = b²-c² , z = c² - a²
x + y + z
= a² - b² + b² - c² + c² - a²
= 0
Therefore ,
(a²-b²)³+(b²-c²)³+(c²-a²)³
= 3(a²-b²)(b²-c²)(c²-a²) ----( 1 )
ii ) Similarly ,
(a-b)³+(b-c)³+(c-a)³ = 3(a-b)(b-c)(c-a)---(2)
Now ,
[(a²-b²)³+(b²-c²)³+(c²-a²)³]/[(a-b)³+(b-c)³+(c-a)³]
= [3(a²-b²)(b²-c²)(c²-a²)]/[3(a-b)(b-c)(c-a)]
= (a+b)(b+c)(c-a)
[ Since , x² - y² = ( x + y )( x - y ) ]
••••••
Khumanshintry:
hello
Similar questions