Factorize the following :
i) 4a4 + b4. ii) x3 + 64y3 + z3-12xyz . iii) x3 + 64
iv) 5x2 – 13x – 6
Answers
Answer:
1) 4a⁴ + b⁴
➪ (2a²)² + (b²)²
➪ (2a² + b²)² - 2 × a² × b²
➪ (2a² + b²)² - 2a²b²
➪ (2a² + b²)² - (2ab)²
➪ (2a² + b² + 2ab) (2a² + b² - 2ab)
➪ (2a² + 2ab + b²) (2a² - 2ab + b²)
∴ The answer of this question is
(2a² + 2ab + b²) (2a² - 2ab + b²)
Formula used :-
➪ a² + b²
➭ (a + b)² - 2ab
➪ a² - b²
➭ (a + b) (a - b)
2) x³ + 64y³ + z³ - 12xyz
➪ (x)³ + (4y)³ + (z)³ - 3 × x × 4y × z
➪ (x + 4y + z) {(x)² + (4y)² + (z)² - x × 4y - 4y × z - z × x}
➪ (x + 4y + z) (x² + 16y² + z² - 4xy - 4yz - xz)
∴ The answer of this question is
(x + 4y + z) (x² + 16y² + z² - 4xy - 4yz - xz)
Formula used :-
➪ a³ + b³ + c³ - 3abc
➭ (a + b + c) (a² + b² + c² - ab - bc - ca)
3) x³ + 64
➪ (x)³ + (4)³
➪ (x + 4) {(x)² - x × 4 + (4)²}
➪ (x + 4) (x² - 4x + 16)
∴ The answer of this question is
(x + 4) (x² - 4x + 16)
Formula used :-
➪ x³ + y³
➭ (x + y) (x² - xy + y²)
4) 5x² - 13x - 6 = 0
➪ 5x² - (15 - 2)x - 6 = 0
➪ 5x² - 15x + 2x - 6 = 0
➪ 5x(x - 3) + 2(x - 3) = 0
➪ (x - 3) (5x + 2) = 0
➪ (x - 3) = 0
➪ x - 3 = 0
➪ x = 3
Either,
➪ (5x + 2) = 0
➪ 5x + 2 = 0
➪ 5x = - 2
➪ x = - 2/5
∴ The answer of this question is
x = 3, - 2/5