Factorize using suitable identies....
i.) (p + 10)(p +11)
ii.) (4x + 9)(4x + 12)
iii.) (x - 5)(x - 1)
iv.)(9x - 5)(9x -1)
v.)(2x + 5y)(2x + 3y)
Answers
★ Solution :
Using identity = x² + (a + b) x + ab
❶ (p + 10) ( p + 11)
➛p² + (10 + 11) × x + (10 × 11)
➛p² + 21x + 110
__________
❷ (4x + 9)(4x + 12)
➛4x² + (9 + 12) × 4x + (9 × 12)
➛16x² + 48x + 108
__________
❸ (x - 5)(x - 1)
➛x² + (5 + 1) × x + ( 5 × 1)
➛x² + 6x + 5
__________
❹ (9x - 5)(9x -1)
➛9x² + (5 + 1) × 9x + (5 × 1)
➛81x² + 54x + 5
___________
❺ (2x + 5y)(2x + 3y)
➛2x² + (5y + 3y) × 2x + (5y × 3y)
➛4x² + 16xy + 15y²
___________
Answers :
¡) p² + 21x + 110
¡¡) 16x² + 48x + 108
¡¡¡) x² - 6x + 5
iv) 81x² - 54x + 5
v) 4x² + 16xy + 15y²
Solutions :
Using identity :
Now Apply this identity here,
➩ p² + (10 + 11)x + (10 × 11)
➩ p² + 21(x) + 110
➩ p² + 21x + 110
━━━━━━━━━━━━━━━
➩ (4x)² + (9 + 12)(4x) + (9 × 12)
➩ 16x² + 21(4x) + 108
➩ 16x² + 84x + 108
━━━━━━━━━━━━━━━
➩ x² + (-5 - 1)x + ( -5 × -1)
➩ x² +(-6)x + (5)
➩ x² - 6x + 5
━━━━━━━━━━━━━━━
➩ (9x)² + (-5 -1)(9x) + (-5 × -1)
➩ 81x² +(-6)(9x) + (5)
➩ 81x² - 54x + 5
━━━━━━━━━━━━━━━
➩ (2x)² + (5y + 3y)(2x) + (5y × 3y)
➩ 4x² + [10xy + 6xy ] + 15y²
➩ 4x² + 16xy + 15y²