Math, asked by gargdaksh0616, 11 months ago

factorize using the factor theorem 2x^3− 13x^2+6x+45

Answers

Answered by Anonymous
0

\huge{\boxed{\red{\bf{Solution:-}}}}

Let {f(x)} = {2x}^{3} - {13x}^{2} + {6x} + {45}

then,

let {x} = {3}

{f(3)} = {2×3}^{3} - {13×3}^{2} + {6×3} + {45}

{f(3)} = {54} - {117} + {18} + {45}

{f(3)} = {117} - {117}

{f(3)} = {0}

(x-3) is a factor of f(x).

Dividing f(x) from (x+1), we get:-

{2x}^{2} - {7x} - {15}={0}

Factorizing {2x}^{2} - {7x} - {15}={0}:-

{2x}^{2} - {10x} + {3x} - {15}={0}

{2x(x-5)-3(x-5)}={0}

{(2x-3)(x-5)}={0}

\huge{\boxed{\red{\bf{Answer:-}}}}

Hence the factors of f(x) are:-

(x - 5)(2x - 3)(x - 3)

Similar questions