Math, asked by pratham4329, 1 year ago

factorize. x^2-1/4x-1

no comments please ............

Answers

Answered by shadowsabers03
1

Answer:

(x - \frac{1 + \sqrt{65}}{8})(x - \frac{1 - \sqrt{65}}{8})

Step-by-step explanation:

Let\ \ x^2 - \frac{1}{4}x - 1 = 0 \\ \\ \\ a = 1\ \ ;\ \ b = -\frac{1}{4}\ \ ;\ \ c = -1 \\ \\ \\ b^2 - 4ac \\ \\ = (-\frac{1}{4})^2 - (4 \times 1 \times -1) \\ \\ = \frac{1}{16} - (-4) \\ \\ = \frac{1}{16} + 4\ =\ 4\frac{1}{16}\ =\ \frac{65}{16} \\ \\ \\


\\ \\ \\ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \\ = \frac{\frac{1}{4} \pm \frac{\sqrt{65}}{4}}{2} \\ \\ = \frac{\frac{1 \pm \sqrt{65}}{4}}{2} \\ \\ = \frac{1 + \sqrt{65}}{8}\ \ \ \ \ OR\ \ \ \ \ \frac{1 - \sqrt{65}}{8} \\ \\ \\


\\ \\ \\ \therefore\ x^2 - \frac{1}{4}x - 1 = (x - \frac{1 + \sqrt{65}}{8})(x - \frac{1 - \sqrt{65}}{8}) \\ \\ \\


\\ \\ \\ Hope\ this\ may\ be\ helpful. \\ \\ Please\ mark\ my\ answer\ as\ the\ \bold{branliest}\ if\ this\ may\ be\ helpful. \\ \\ Thank\ you.\ Have\ a\ nice\ day. \\ \\ \\ \#adithyasajeevan

Similar questions