Math, asked by svmvandana9455, 4 months ago

Factorize (x^4-8x^2y^2+16y^4)-289​

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{(x^4-8x^2y^2+16y^4)-289}

\underline{\textbf{To find:}}

\mathsf{Factors\;of\;(x^4-8x^2y^2+16y^4)-289}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{(x^4-8x^2y^2+16y^4)-289}

\textsf{This can be written as}

\mathsf{=[(x^2)^2-2(x^2)(4y^2)+(4y^2)^2]-289}

\textsf{Using the identity,}

\boxed{\mathsf{(a-b)^2=a^2-2ab+b^2}}

\mathsf{=(x^2-4y^2)^2-(17)^2}

\textsf{Using the identity,}

\boxed {\mathsf{a^2-b^2=(a-b)(a+b)}}

\mathsf{=(x^2-4y^2-17)(x^2-4y^2+17)}

\implies\boxed{\mathsf{(x^4-8x^2y^2+16y^4)-289=(x^2-4y^2-17)(x^2-4y^2+17)}}

\underline{\textbf{Find more:}}

1.x^2-(a-1/a)x+1 factorise the following

https://brainly.in/question/4301404

2.Factorise x^4-(x-z)^4​

https://brainly.in/question/14993176

Answered by hunarmiglani1210
0

Step-by-step explanation:

Attachments:
Similar questions