Math, asked by jaganvas79, 4 months ago

Factorize: x⁴- y⁴ please solve this question its soo urgent ​

Answers

Answered by Anonymous
4

As we know that :

( {a}^{2}  -  {b}^{2} ) = (a + b)(a - b)

 {x}^{4}  -  {y}^{4}  =  {( {x}^{2}) }^{2}  -  {( {y}^{2}) }^{2}  \\  \\  =  > ( {x}^{2}  -  {y}^{2} )( {x}^{2}  +  {y}^{2} ) \\  \\  =  > (x - y)(x + y)( {x}^{2}  +  {y}^{2} )

________________________________

I hope it will help you ☺

Fóllòw Më ❤

Answered by BawliBalika
22

Question:

factorise x⁴ - y⁴

We know that:

 \sf\underbrace\red{ \:  {a}^{2}  -  {b}^{2}  = (a - b)(a + b)}

So,

\sf {x}^{4}  -  {y}^{4}

=\sf \:  { ({x}^{2}) }^{2}  -  { ({y}^{2}) }^{2}

Now using identity,we get:

\sf { ({x}^{2}) }^{2}  -  { ({y}^{2} )}^{2}

=\sf \: ( {x}^{2}  +  {y}^{2})( {x}^{2}   -  {y}^{2} )

again using the identity in ( - y²),we get:

\sf ({x}^{2}  -  {y}^{2} )

= \sf{(x - y)(x + y)}

Thus,

\sf{x}^{4}  -  {y}^{4}

=\sf{( {x}^{2} +  {y}^{2} )(x - y)(x + y)}

\tt\underbrace{\overbrace\red{more\: algebraic\: identity}}

1) (a + b)² = a² + 2ab + b²

2) (a - b)² = a² - 2ab + b²

3) a² - b² = (a + b)(a - b)

4) (a + b)² = (a - b)² + 4ab

5) (a - b)² = (a + b)² - 4ab

6) (a + b)³ = a³ - 3ab(a - b) + b³

7) (a - b)³ = a³ + 3ab(a + b) + b³

8) a³ + b³ = (a + b)(a² - ab + b²)

Similar questions