Math, asked by devanshi30, 1 year ago

factors of x^2+1/x^2-3 are

Answers

Answered by MarkAsBrainliest
0
Answer: \\ \\ Now, \: \: {x }^{2} + \frac{1}{ {x}^{2} } -3 \\ \\ = {(x + \frac{1}{x}) }^{2} - (2 \times x \times \frac{1}{x} ) - 3 \\ \\ = {(x + \frac{1}{x}) }^{2} - 2 - 3 \\ \\ = {(x + \frac{1}{x} )}^{2} - 5 \\ \\ = {( x + \frac{1}{x}) }^{2} - {( \sqrt{5}) }^{2} \\ \\ = (x + \frac{1}{x} + \sqrt{5} )(x + \frac{1}{x} - \sqrt{5} ), \\ using \: \: the \: \: identity \\ (x + y)(x - y) = {x}^{2} - {y}^{2} \\ \\ which \: \: is \: \: the \: \: required \\ factorization.

#MarkAsBrainliest
Answered by Robin0071
0
Solution:-

given by:-

 {x}^{2}  +  \frac{1}{  {x}^{2}  }  - 3 \\ by \: the \: for \: formula \\  {(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  {(x +  \frac{1}{x} ) }^{2}  - 5 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 3 \\  {(x +  \frac{1}{x} ) }^{2}  -  { \sqrt{5}}^{2}  \\ condition \: aply \: by \: diffrence \: square \: method \\ (x +  \frac{1}{x}  +  \sqrt{5} )(x +  \frac{1}{x}  -  \sqrt{5} )ans
Similar questions