Math, asked by anujgargsp925dq, 1 year ago

fast
class 10
chapter 8or 9
no spam

Attachments:

Answers

Answered by abdul143
5
 <font color ="blue" > <tt> <h3 > < < holla! </font> <font color ="green"> mate > > </font>
 <b> <tt> <font color = "purple">
SOLUTION :

=> 4tan@ = 3 , 4sin@ - cos@/4sin@ + cos@

=> by drawing a right angled triangle.

=> Name them as a,b,c .

=> putting the trigonometric values.

=> firstly , 4tan@ = 3

=> tan@ = 3/4.

=> we got this and then,

=> we knows tan@ = p/b =3/4.

=> by using Pythagoras theorem

=> h² = p² + b²

=> (AC)² = (AB)² + (BC)²

=> (AC)² = (3)² + (4)²

=> (AC)² = 9 + 16

=> AC = √25

=> AC = 5

then, putting trigonometric values

FIND => 4sin@ - cos@/4sin@ + cos@ = ?

=> we the values =>>

=> sin@ = 3/5

=> cos@ = 4/5

 \: \: > > \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \frac{4 \times \frac{3}{5} - \frac{4}{5} }{4 \times \frac{3}{5} + \frac{4}{5} } } \\ \\ \: \: \: \: \: \: \: \: \: \: \: > > \: \: \: \: \: \: \: \: \: \: \: \bf{\frac{ \frac{12}{5} - \frac{4}{5} }{ \frac{12}{5} + \frac{4}{5} } } \\ \\ > > \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \frac{ \frac{12 - 4}{5} }{ \frac{12 + 4}{5} } } \\ \\ > > \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \frac{ \frac{8}{5} }{ \frac{16}{5} }} \\ \\ \: > > \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \frac{8}{5} \times \frac{5}{16} } \\ \\ > > \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bf{ \frac{8}{ \cancel{5 \: }} \times \frac{ \cancel{5 \: }}{16} } \: \\ \\ \: > > \: \: \: \: \: \: \: \frac{8}{16} = \frac{ \cancel{8 \: }}{ \cancel{16}} = \frac{1}{2}
Attachments:

anujgargsp925dq: i will chose u brainlist as soon as the option is there
Similar questions