Hindi, asked by NOUN99, 4 months ago

fEW LINES ON COPY THAT ON BRAINLY)-

Answers

Answered by Anonymous
2

Answer:

..ANS)COPY THAT IS ON 1ST RANKING IN QUARTERLY..HIS POINTS ARE MORE THAN 12600..HIS FRIENDS ARE SAKSHAM SRIVASTA AND ITZCHINNU...MAYBE I ALSO...HOPE THIS HELPS..

Answered by XBarryX
0

Answer:

Answer:

Given :-

A body moving with rest of uniform acceleration travels a distance 'X' in the first t seconds and travels the distance 'Y' with same acceleration in next 2t seconds.

To Find :-

What is the relationship.

Formula Used :

\clubsuit♣ Second Equation Of Motion :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{s =\: ut + \dfrac{1}{2}at^2}}}\\\end{gathered}↦s=ut+21at2

where,

s = Distance Covered

u = Initial Velocity

t = Time

a = Acceleration

Solution :-

\begin{gathered}{\normalsize{\bold{\purple{\underline{\bigstar\: In\: the\: first\: case\: :-}}}}}\\\end{gathered}★Inthefirstcase:−

Given :

Distance Covered = X

Initial Velocity = 0 m/s

Time = t seconds

According to the question by using the formula we get,

\implies \sf X =\: 0(t) + \dfrac{1}{2} \times at^2⟹X=0(t)+21×at2

\implies \sf X =\: 0 + \dfrac{1}{2} \times at^2⟹X=0+21×at2

\implies \sf X =\: \dfrac{1}{2} \times at^2⟹X=21×at2

\begin{gathered}\implies \sf\bold{\green{X =\: 0.5at^2\: ------\: (Equation\: No\: 1)}}\\\end{gathered}⟹X=0.5at2−−−−−−(EquationNo1)

\begin{gathered}{\normalsize{\bold{\purple{\underline{\bigstar\: In\: the\: second\: case\: :-}}}}}\\\end{gathered}★Inthesecondcase:−

Given :

Distance Covered = Y

Initial Velocity = 0 m/s

Time = 2t seconds

According to the question by using the formula we get,

\begin{gathered}\implies \sf Y =\: \bigg(0(t) + \dfrac{1}{2} \times a \times (2t)^2\bigg) - 0.5at^2\\\end{gathered}⟹Y=(0(t)+21×a×(2t)2)−0.5at2

\begin{gathered}\implies \sf Y =\: \bigg(0 + \dfrac{1}{2} \times a \times 2t \times 2t\bigg) - 0.5at^2\\\end{gathered}⟹Y=(0+21×a×2t×2t)−0.5at2

\begin{gathered}\implies \sf Y =\: \bigg(0 + \dfrac{1}{2} \times a \times 4t^2\bigg) - 0.5at^2\\\end{gathered}⟹Y=(0+21×a×4t2)−0.5at2

\begin{gathered}\implies \sf Y =\: \bigg(\dfrac{1}{\cancel{2}} \times {\cancel{4}}at^2\bigg) - 0.5at^2\\\end{gathered}⟹Y=(21×4at2)−0.5at2

\implies \sf Y =\: 2at^2 - 0.5at^2⟹Y=2at2−0.5at2

\implies \sf Y =\: 1.5at^2⟹Y=1.5at2

\begin{gathered}\implies \sf\bold{\green{Y =\: 1.5at^2\: ------\: (Equation\: No\: 2)}}\\\end{gathered}⟹Y=1.5at2−−−−−−(EquationNo2)

Now, by dividing the equation no 2 by equation no 1 we get,

\longrightarrow \sf \dfrac{Y}{X} =\: \dfrac{1.5\cancel{at^2}}{0.5\cancel{at^2}}⟶XY=0.5at21.5at2

\longrightarrow \sf \dfrac{Y}{X} =\: \dfrac{1.5}{0.5}⟶XY=0.51.5

\longrightarrow \sf \dfrac{Y}{X} =\: \dfrac{\dfrac{15}{10}}{\dfrac{5}{10}}⟶XY=105

Similar questions