Physics, asked by Mohd0aman0mirza, 1 year ago

Figure shows four identical currents i and an
amperian loops encircling them. We shall calculate
∆B.dl in the direction marked. The correct value
is​

Attachments:

Answers

Answered by nirman95
4

Given:

Figure shows four identical currents i and an

amperian loops encircling them.

To find:

Value of \oint \vec{B}.d\vec{l}

(Options given in image).

Calculation:

Consider upward direction to be +ve.

Starting from left to right:

1st loop:

 \displaystyle \oint \vec{B} \: . \: d \vec{l} =    - \mu_{0}i \:  \:  \:  \: ......(1)

2nd loop:

 \displaystyle \oint \vec{B} \: . \: d \vec{l} =     \mu_{0}i \:  \:  \:  \: ......(2)

3rd loop:

 \displaystyle \oint \vec{B} \: . \: d \vec{l} =     \mu_{0}(2i) \: \:  \:   \:  \:  ......(3)

So, net magnetic circulation:

 \displaystyle \oint \vec{B} \: . \: d \vec{l} =     \mu_{0}(2i + i - i)

 =  >  \displaystyle \oint \vec{B} \: . \: d \vec{l} =     \mu_{0}(2i)

 =  >  \displaystyle \oint \vec{B} \: . \: d \vec{l} =     2\mu_{0}i

So, final answer is:

 \displaystyle \boxed{ \bf{ \oint \vec{B} \: . \: d \vec{l} =     2\mu_{0}i}}

Attachments:
Similar questions