Math, asked by seenudhoni8260, 10 months ago

Fimd the value of x sq +1/x sq. Wjen x sq. Is 4 +√15

Answers

Answered by mysticd
0

 Given \: x = 4 + \sqrt{15} \: --(1)

 i) \frac{1}{x} = \frac{1}{(4+\sqrt{15})}\\= \frac{(4 - \sqrt{15})}{(4 + \sqrt{15})(4 -\sqrt{15} )} \\= \frac{(4 - \sqrt{15})}{(4^{2} -(\sqrt{15} )^{2}} \\= \frac{(4 - \sqrt{15})}{16 - 15 } \\= \frac{(4 - \sqrt{15})}{1} \\= 4-\sqrt{15} \: ---(2)

 ii ) x + \frac{1}{x} \\= 4 + \sqrt{15}+4 - \sqrt{15}\\= 8 \: --(2)

 x^{2} + \frac{1}{x^{2}} = \Big( x + \frac{1}{x}\Big)^{2} - 2 \times x\times  \frac{1}{x} \\= \Big( x + \frac{1}{x}\Big)^{2} - 2 \\= 8^{2} - 2 \\= 64 - 2 \\= 62

Therefore.,

 \red { Value \:of \:x^{2} + \frac{1}{x^{2}} }\green {= 62 }

•••♪

Answered by sus9
0

Don't kow.... ............. ..................

Similar questions