fin the value of k for which the roots are real and equal
Attachments:
Answers
Answered by
2
Hi !
a quadratic equation is of the form ax² + bx + c = 0
If the roots are real and equal then, b² - 4ac = 0
(i) x² - 2kx + 7k- 12 = 0
a = 1 , b = -2k , c = 7k - 12
b² - 4ac
(-2k)² - 4*(7k - 12) = 0
4k² - 28k + 48 = 0
k² - 7k + 12 = 0
k²- 3k - 4k + 12= 0
k(k - 3) - 4(k - 3) = 0
(k - 3) (k - 4) = 0
k - 3 = 0 , k - 4 = 0
k = 3 , k = 4
Hence, the value(s) of k are 3 and 4.
---------------------------------------------------------------------------------------
(ii) kx(x - 2√5) + 10 = 0
kx² - 2√5kx + 10 = 0
a = k , b = -2√5k , c = 10
b² - 4ac = 0
(-2√5k)² - 4*k*10 = 0
20k² - 40k = 0
20k² = 40k
Cancelling "k" on both sides,
20k = 40
k = 40/20
= 2
The value of k is 2
a quadratic equation is of the form ax² + bx + c = 0
If the roots are real and equal then, b² - 4ac = 0
(i) x² - 2kx + 7k- 12 = 0
a = 1 , b = -2k , c = 7k - 12
b² - 4ac
(-2k)² - 4*(7k - 12) = 0
4k² - 28k + 48 = 0
k² - 7k + 12 = 0
k²- 3k - 4k + 12= 0
k(k - 3) - 4(k - 3) = 0
(k - 3) (k - 4) = 0
k - 3 = 0 , k - 4 = 0
k = 3 , k = 4
Hence, the value(s) of k are 3 and 4.
---------------------------------------------------------------------------------------
(ii) kx(x - 2√5) + 10 = 0
kx² - 2√5kx + 10 = 0
a = k , b = -2√5k , c = 10
b² - 4ac = 0
(-2√5k)² - 4*k*10 = 0
20k² - 40k = 0
20k² = 40k
Cancelling "k" on both sides,
20k = 40
k = 40/20
= 2
The value of k is 2
Anonymous:
(k - 3) (k - 4) = 0
Similar questions