Math, asked by arushigupta52, 9 months ago

Find
1) A:B:C
2) A:C


If 3A=4B=6C..



plzz no unecessary answers it is urgent....​

Answers

Answered by Anonymous
15

Given:

3A = 4B = 6C.

To Find:

(i) A:B:C

(ii) A:C

Concept Used:

We will take as 3A = 4B = 6C = k .

Here k is a constant.

Answer:

Here given that 3A = 4B = 6C

Let us admit 3A = 4B = 6C = k .

Now ,

\sf{\implies3A = k .}

\sf{\leadsto A=\dfrac{k}{3}}

Similarly ,

\sf{\implies4B= k .}

\sf{\leadsto B=\dfrac{k}{4}}

And ,

\sf{\implies 6C = k .}

\sf{\leadsto A=\dfrac{k}{6}}

\rule{200}1

Now ,

(i) A:B:C

= \sf{\dfrac{k}{3}:\dfrac{k}{4}:\dfrac{k}{6}}

=\sf{ \dfrac{1}{3}:\dfrac{1}{4}:\dfrac{1}{6}}

=\sf{\dfrac{1}{3}\times12:\dfrac{1}{4}\times12:\dfrac{1}{6}\times12}

\red{\sf{\leadsto 4:3:2}}

\rule{200}1

(ii) A:C

=\sf{\dfrac{k}{3}:\dfrac{k}{6}}

=\sf{\dfrac{1}{3}:\dfrac{1}{6}}

=\sf{\dfrac{1}{3}\times6:\dfrac{1}{6}\times12}

\red{\sf{\leadsto 2:1}}

Similar questions