Math, asked by Nivetha09, 3 months ago

find 1. L ^-1 [ 3/ (s-3) ^2+25]

2. L^-1 [1/ (s-3) ^2 +2/(s+1) ^2 +4]

Answers

Answered by jaswinderdhanoa10
0

Step-by-step explanation:

satisfies

L{f}(s) = F(s),

then we say that f(t) is the inverse Laplace transform of F(s) and employ the notation

f(t) = L

−1{F}(t).

Table of inverse Laplace transform

F(s) f(t) = L

−1{F}(t)

1

s

, s > 0 1

1

s − a

, s > a e

at

(n − 1)!

s

n , s > 0 t

n−1

, n = 1, 2, ...

b

s

2 + b

2

, s > 0 sin bt

s

s

2 + b

2

, s > 0 cos bt

(n − 1)!

(s − a)

n , s > a e

att

n−1

, n = 1, 2, ...

b

(s − a)

2 + b

2

, s > a e

at sin bt

s − a

(s − a)

2 + b

2

, s > a e

at cos bt

Example 1. Determine the inverse Laplace transform of the given function.

(a) F(s) = 2

s

3

.

SOLUTION. L

−1

2

s

3

= L

−1

2!

s

3

= t

2

(b) F(s) = 2

s

2+4 .

SOLUTION. L

−1

2

s

2+4

= L

−1

2

s

2+22

= sin 2t.

(c) F(s) = s+1

s

2+2s+10 .

SOLUTION. L

−1

s+1

s

2+2s+10

= L

−1

n

s+1

(s+1)2+9o

= L

−1

n

s+1

(s+1)2+32

o

= e−t

cos 3t.

Theorem 1. (linearity of the inverse transform) Assume that L

−1{F}, L

−1{F1},

and L

−1{F2} exist and are continuous on [0, ∞) and c is any constant. Then

L

−1

{F1 + F2} = L

−1

{F1} + L

−1

{F2}

L

−1

{cF} = cL

−1

{F}.

Example 2. Determine L

−1

n

3

(2s+5)3 +

2s+16

s

2+4s+13 +

3

s

2+4s+8o

.

Similar questions