Math, asked by krish77749, 1 year ago

find 3/4 of 124 and 840​

Answers

Answered by Akash95421
0

Step-by-step explanation:

Hey there !!

→ Prove that :-)

\bf{ \frac{tan A}{(1 - cot A)} + \frac{cot A}{(1 - tan A)} = ( 1 + tan A + cot A ) .}

(1−cotA)

tanA

+

(1−tanA)

cotA

=(1+tanA+cotA).

→ Solution :-)

Given,,

\begin{lgathered}\begin{lgathered}\frac{\tan\theta}{1-\cot\theta}\;+\;\frac{\cot\theta}{1-\tan\theta}\\ \\=\frac{\tan\theta}{1-\cot\theta}\;+\;\frac{\cot\theta}{1-\frac{1}{\cot\theta}}\\ \\=\frac{\tan\theta}{1-\cot\theta}+\frac{\cot^{2}\theta}{\cot\theta-1}\\ \\=\frac{\tan\theta}{1-\cot\theta}-\frac{\cot^{2}\theta}{1-\cot\theta}\\ \\=\frac{\tan\theta-\cot^{2}\theta}{1-\cot\theta}\\ \\ =\frac{\frac{1}{\cot\theta}-\cot^{2}\theta}{1-\cot\theta}\\ \\=\frac{1-cot^{3}\theta}{\cot\theta(1-\cot\theta)}\\ \\=\frac{(1-cot\theta)(1+cot^{2}\theta+\cot\theta)}{\cot\theta(1-\cot\theta)}\\ \\=\frac{1+cot^{2}\theta+\cot\theta}{\cot\theta}\\ \\=\frac{1}{\cot\theta}+\frac{\cot^{2}\theta}{\cot\theta}+\frac{\cot\theta}{\cot\theta}\\ \\=\tan\theta+\cot\theta+1\;\;\;\textbf{Proved.}\end{lgathered}\end{lgathered}

1−cotθ

tanθ

+

1−tanθ

cotθ

=

1−cotθ

tanθ

+

1−

cotθ

1

cotθ

=

1−cotθ

tanθ

+

cotθ−1

cot

2

θ

=

1−cotθ

tanθ

1−cotθ

cot

2

θ

=

1−cotθ

tanθ−cot

2

θ

=

1−cotθ

cotθ

1

−cot

2

θ

=

cotθ(1−cotθ)

1−cot

3

θ

=

cotθ(1−cotθ)

(1−cotθ)(1+cot

2

θ+cotθ)

=

cotθ

1+cot

2

θ+cotθ

=

cotθ

1

+

cotθ

cot

2

θ

+

cotθ

cotθ

=tanθ+cotθ+1Proved.

Answered by Bsaiharshitha
2

Answer:

93 ,630.

Step-by-step explanation:

find 3/4 of 124 and 840

3/4 of 124

=3/4 ×124

= 93

3/4 of 840

=3/4 ×840

=630

Similar questions