Math, asked by torbaba3078, 1 year ago

Find 31² + 32² + 33² + .... +50²

Answers

Answered by abhi178
5

it is given that, S = 31² + 32² + 33² + .... + 50²

we know, formula,

1² + 2² + 3² + 4² ..... + n² = n(n + 1)(2n + 1)/6

so here first find S_{50} and then S_{30} and subtract them to get value of S.

i.e., S=S_{50}-S_{30}

now, S_{50} = 50(50 + 1)(2 × 50+1)/6 = 50 × 51 × 101/6

similarly, S_{30} = 30 × 31 × 61/6

now, S = 50 × 51 × 101/6 - 30 × 31 × 61/6

= 10/6 [ 5 × 51 × 101 - 3 × 31 × 61 ]

= 10/6 × 20082

= 10 × 3347

= 33470

hence, value of 31² + 32² + 33² + .... + 50² = 33470.

Answered by inchudevi459
0

Answer:

Hence the result is=33470

Step-by-step explanation:

We have to find:

S=31^2+32^2+33^2+.............+50^2

Formula for sum of square of  natural numbers upto n terms is following:

S_n=1^2+2^2+3^2+................n^2=\dfrac{(n)(n+1)(2n+1)}{6}

S=S_{50}-S_{30}

S=1^2+2^2+3^2+................+50^2-1^2+2^2+3^+............+30^2

S=\dfrac{(50)(50+1)(2\times50+1)}{6}-\dfrac{(30)(30+1)(2\times30+1)}{6}

S=\dfrac{(50)(51)(101)}{6}-\dfrac{(30)(31)(61)}{6}

After calculating the above term, we get:

S=\dfrac{257550}{6}-\dfrac{56730}{6}

After taking LCM 6, We get:

S=\dfrac{257550-56730}{6}

After solving the above terms ,we get

S=\dfrac{200820}{6}

After dividing ,we get:

S=33470

This is the final result.

Similar questions