Find a^3-1/a^3 if a-1/a=14
Answers
Answered by
1
Answer:
2786
Step-by-step explanation:
a-1/a=14
Cubing on both sides
a^3-1/a^3-3(a-1/a)=14^3
a^3-1/a^3=2744+3(14)=2786
Answered by
5
ANSWER:
a³ - 1/a³ = 2786
GIVEN:
a - (1 / a) = 14
TO FIND:
a³ - (1/a³) = ??
FORMULA:
(A - B)² = A² - 2AB + B²
(A - B)²(A-B) = (A - B)³
(A - B)³ = (A² - 2AB + B²)(A-B)
(A - B)³ = A³ - 2A²B - B³ + 2AB²
EXPLANATION:
Apply square on both sides.
(a - 1/a)² = 14²
a² - 2a × 1/a + 1/a² = 196
a² - 2 +b1/a² = 196
a² + 1/a² = 198
Multiply by a - (1 / a) on left side and by 14 on right sides as a - (1 / a) = 14
(a² + 1/a²)(a - 1/a) = 198 × 14
a³ - a + 1/a - 1/a³ = 2772
a³ - 1/a³ - (a - 1/a) = 2772
a³ - 1/a³ - 14 = 2772
a³ - 1/a³ = 2786
Similar questions