Math, asked by ammujennifer2184, 9 months ago

Find a & b if 7 + 3 root 5 / 2 + root 5 - 7 - 3 root 5/2 - root 5 = a + b root 5

Answers

Answered by Anonymous
16

Answer:

\sf{The \ value \ of \ a \ is \ 0 \ and \ b \ is \ 2.}

Given:

\sf{\dfrac{7+3\sqrt5}{2+\sqrt5}-\dfrac{7-3\sqrt5}{2-\sqrt5}=a+b\sqrt5}

To find:

\sf{The \ value \ of \ a \ and \ b.}

Solution:

\sf{\leadsto{a+b\sqrt5=\dfrac{7+3\sqrt5}{2+\sqrt5}-\dfrac{7-3\sqrt5}{2-\sqrt5}}}

\sf{\therefore{a+b\sqrt5=\dfrac{(7+3\sqrt5)(2-\sqrt5)}{(2+\sqrt5)(2-\sqrt5)}-\dfrac{(7-3\sqrt5)(2+\sqrt5)}{(2-\sqrt5)(2+\sqrt5)}}}

\sf{\therefore{a+b\sqrt5=\dfrac{14-7\sqrt5+6\sqrt5-15}{2^{2}-\sqrt5^{2}}-\dfrac{14+7\sqrt5-6\sqrt5-15}{2^{2}-\sqrt5^{2}}}}

\sf{\therefore{a+b\sqrt5=\dfrac{-1-\sqrt5}{-1}-\dfrac{-1+\sqrt5}{-1}}}

\sf{\therefore{a+b\sqrt5=1+\sqrt5-(1-\sqrt5)}}

\sf{\therefore{a+b\sqrt5=1+\sqrt5-1+\sqrt5}}

\sf{\therefore{a+b\sqrt5=0+2\sqrt5}}

\sf{On \ comparing \ we \ get,}

\sf{a=0 \ and \ b\sqrt5=2\sqrt5}

\sf{\therefore{a=0 \ and \ b=2}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ 0 \ and \ b \ is \ 2.}}}

Answered by NANDUsabkaBANDHU
0

Step-by-step explanation:

The value of a is 0 and b is 2.

Given:

\sf{\dfrac{7+3\sqrt5}{2+\sqrt5}-\dfrac{7-3\sqrt5}{2-\sqrt5}=a+b\sqrt5}

2+

5

7+3

5

2−

5

7−3

5

=a+b

5

To find:

\sf{The \ value \ of \ a \ and \ b.}The value of a and b.

Solution:

\sf{\leadsto{a+b\sqrt5=\dfrac{7+3\sqrt5}{2+\sqrt5}-\dfrac{7-3\sqrt5}{2-\sqrt5}}}⇝a+b

5

=

2+

5

7+3

5

2−

5

7−3

5

\sf{\therefore{a+b\sqrt5=\dfrac{(7+3\sqrt5)(2-\sqrt5)}{(2+\sqrt5)(2-\sqrt5)}-\dfrac{(7-3\sqrt5)(2+\sqrt5)}{(2-\sqrt5)(2+\sqrt5)}}}∴a+b

5

=

(2+

5

)(2−

5

)

(7+3

5

)(2−

5

)

(2−

5

)(2+

5

)

(7−3

5

)(2+

5

)

\sf{\therefore{a+b\sqrt5=\dfrac{14-7\sqrt5+6\sqrt5-15}{2^{2}-\sqrt5^{2}}-\dfrac{14+7\sqrt5-6\sqrt5-15}{2^{2}-\sqrt5^{2}}}}∴a+b

5

=

2

2

5

2

14−7

5

+6

5

−15

2

2

5

2

14+7

5

−6

5

−15

\sf{\therefore{a+b\sqrt5=\dfrac{-1-\sqrt5}{-1}-\dfrac{-1+\sqrt5}{-1}}}∴a+b

5

=

−1

−1−

5

−1

−1+

5

\sf{\therefore{a+b\sqrt5=1+\sqrt5-(1-\sqrt5)}}∴a+b

5

=1+

5

−(1−

5

)

\sf{\therefore{a+b\sqrt5=1+\sqrt5-1+\sqrt5}}∴a+b

5

=1+

5

−1+

5

\sf{\therefore{a+b\sqrt5=0+2\sqrt5}}∴a+b

5

=0+2

5

\sf{On \ comparing \ we \ get,}On comparing we get,

\sf{a=0 \ and \ b\sqrt5=2\sqrt5}a=0 and b

5

=2

5

\sf{\therefore{a=0 \ and \ b=2}}∴a=0 and b=2

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ 0 \ and \ b \ is \ 2.}}}∴The value of a is 0 and b is 2.

Similar questions