Math, asked by riya581, 1 year ago

find a and b if
1 - root 3 / 1 + root 3 = a + root b

Answers

Answered by kshitijNGU
0
Please mark it as a brainlist
Attachments:
Answered by Anonymous
3
Hey there !!
Here's your answer

Given,
to find a and b in

 \frac{1 -  \sqrt{3} }{1 +  \sqrt{3} } = a +  \sqrt{b}

Rationalizing the denominator,
we have,

 \frac{(1 -  \sqrt{3})(1 -  \sqrt{3} ) }{(1 +  \sqrt{3})(1 -  \sqrt{3})  }  = a +  \sqrt{b}
Using the identity (a - b)(a + b) = a² - b² in the denominator and (a-b)(a-b)=a²- 2ab + b²



 \frac{(1) {}^{2} - 2(1)( \sqrt{3}) + ( \sqrt{3}) {}^{2}    }{(1) {}^{2} - ( \sqrt{3}) {}^{2}   }  = a +  \sqrt{b}


 \frac{1 - 2 \sqrt{3} + 3 }{1 - 3}  = a +  \sqrt{b}


 \frac{4 - 2 \sqrt{3} }{ - 2}  = a +  \sqrt{b}

 \frac{2(2 -  \sqrt{3}) }{ - 2} = a +  \sqrt{b}


 \frac{ - 2(2 -  \sqrt{3}) }{2}  = a +  \sqrt{b}

 - 1(2 -  \sqrt{3} ) = a +  \sqrt{b}

 - 2 +  \sqrt{3}  = a +  \sqrt{b}

comparing on both the sides,
we have,

a = -2
b = 3

Anonymous: :-) Hope helped (-:
TheAishtonsageAlvie: Really u deserved it brainliest !☺
Anonymous: thanks bhai :-)
TheAishtonsageAlvie: ^_^
Similar questions