Math, asked by Fadhilaneeq, 1 year ago

find a and b if 2√5+√3÷2√5-√3+2√5-√3÷2√5+√3=a+b√15

Answers

Answered by Anonymous
45

Answer :-

\boxed{\bf{a =  \dfrac{46}{17} \: and \: b = 0}}

Explanation :-

Given :- \sf{ \dfrac{2 \sqrt{5} +  \sqrt{3}  }{2 \sqrt{5} -  \sqrt{3}} +  \dfrac{2 \sqrt{5} -  \sqrt{3} }{2 \sqrt{5} +  \sqrt{3}  } = a + b \sqrt{15}}

To find :- values of a, b

Solution :-

\sf{ \dfrac{2 \sqrt{5} +  \sqrt{3}  }{2 \sqrt{5} -  \sqrt{3}} +  \dfrac{2 \sqrt{5} -  \sqrt{3} }{2 \sqrt{5} +  \sqrt{3}  } = a + b \sqrt{15}}

Let \sf{x= \dfrac{2 \sqrt{5} +  \sqrt{3}  }{2 \sqrt{5} -\sqrt{3}} }

Let \sf{y= \dfrac{2 \sqrt{5} - \sqrt{3}  }{2 \sqrt{5} + \sqrt{3}} }

Consider x

Rationalize the denomintors

The rationalizing factor of 2√5 - √3 is 2√5 + 3√2. So, multiply both numerator and denominator.

 \dfrac{2 \sqrt{5} +  \sqrt{3} }{2 \sqrt{5} - \sqrt{3}  }  \times  \dfrac{2\sqrt{5} +  \sqrt{3} }{2 \sqrt{5} +  \sqrt{3} }

 = \dfrac{ {(2 \sqrt{5} +  \sqrt{3})  }^{2} }{ {(2 \sqrt{5}) }^{2} -  {( \sqrt{3}) }^{2} }

[Since x² + y² = (x + y)(x - y) ]

 =  \dfrac{ {(2 \sqrt{5})}^{2} +  {( \sqrt{3})}^{2} + 2(2 \sqrt{5})( \sqrt{3})}{4(5) - 3}

[Since (x + y)² = x² + y² + 2xy]

 =  \dfrac{4(5) + 3 + 4 \sqrt{15} }{20 - 3}

 =  \dfrac{20 + 3 + 4 \sqrt{15} }{17}

 =  \dfrac{23 + 4 \sqrt{15} }{17}

Consider y

The rationalizing factor of 2√5 + √3 is 2√5 - 3√2. So, multiply both numerator and denominator.

 \dfrac{2 \sqrt{5} -  \sqrt{3} }{2 \sqrt{5} +  \sqrt{3} } \times  \dfrac{2 \sqrt{5} -  \sqrt{3} }{2 \sqrt{5} -  \sqrt{3}  }

 =  \dfrac{ {(2 \sqrt{5} -  \sqrt{3})}^{2} }{ {( 2\sqrt{5})}^{2} -  {( \sqrt{3}) }^{2} }

[Since x² + y² = (x + y)(x - y) ]

 =  \dfrac{ {(2 \sqrt{5})}^{2} +  {( \sqrt{3})}^{2} - 2(2 \sqrt{5})( \sqrt{3})}{4(5) - 3}

[Since (x - y)² = x² + y² - 2xy]

 =  \dfrac{4(5) + 3  -  4 \sqrt{15} }{20-3}

 =  \dfrac{20 + 3 - 4 \sqrt{15} }{17}

 =  \dfrac{23 - 4 \sqrt{15} }{17}

Now find the value of (x + y)

 \dfrac{23   + 4 \sqrt{15} }{17}  +  \dfrac{23 - 4 \sqrt{15} }{17}

 =  \dfrac{46}{17}

Equating a corresponding irrational and rational numbers we have,

 \dfrac{46}{17} = a + b \sqrt{15}

a =  \dfrac{46}{17}

b \sqrt{15} = 0

b = 0 \sqrt{15}

b = 0

\boxed{\bf{a =  \dfrac{46}{17} \: and \: b = 0}}

Similar questions