Math, asked by jugraj03, 1 year ago

find a and b if 3+√2/3 -√2=a+b√2

Attachments:

Answers

Answered by abhi569
1

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}

=====================

Solving
 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }
===================


By rationalization,


 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3  +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\  \\   \frac{(3 +  \sqrt{2} )^{2} }{ {(3)}^{2}  - ( \sqrt{2} )^{2} }  \\  \\  \\   \frac{9 + 2 + 6 \sqrt{2} }{9 - 4}  \\  \\  \\  \frac{11 + 6 \sqrt{2} }{5}


Comparing values,


 \frac{11 + 6 \sqrt{2} }{5}  = a + b \sqrt{2}



a =  \frac{11}{5}  \\  \\  \\ b =  \frac{6}{5}




I hope this will help you


(-:
Answered by Anonymous
0
Heya ✋

Let see your answer !!!!!

Given that

3 + √2 / 3 - √2 = a + b√2

Solution

(3 + √2) × (3 + √2) / (3 - √2) × (3 + √2)

= (3 + √2)^2 / (3)^2 - (√2)^2

= (3)^2 + (√2)^2 + 2 × 3 × √2 / 9 - 2

= 9 + 2 + 6√2 / 7

= 11 + 6√2/7

= 11/7 + 6√2/11

On getting the values

a = 11/7

b√2 = 6√2/11

b = 6/11





Thanks :))))
hope \: it \: helps \: u
Similar questions