find a and b if 3+√6/√3+√2 = a +b +√3
Answers
Answered by
5
Answer:
(3+√6)/(√3+√2) = a +b +√3
(3+√6)×(√3-√2)/(√3+√2)×(√3-√2) = a + b + √3
(3√3 -3√2 +√18 -√12)/(√3² -√2²) = a + b + √3
(3√3 -3√2 +√18 -√12)/(3-2) = a + b + √3
(3√3 -3√2 +√18 -√12)/1 = a + b + √3
3√3-√3 -3√2 +√18 -√12 = a+b
2√3 -3√2 + 3√2 - 2√3 = a + b
2√3 -2√3 +3√2 -3√2 = a +b
0 = a +b
a= -b
b= -a
Similar questions