Math, asked by uklenlego, 8 months ago

find a and b if 3+√6/√3+√2 = a +b +√3​

Answers

Answered by SUMIT86486
5

Answer:

(3+√6)/(√3+√2) = a +b +√3

(3+√6)×(√3-√2)/(√3+√2)×(√3-√2) = a + b + √3

(3√3 -3√2 +√18 -√12)/(√3² -√2²) = a + b + √3

(3√3 -3√2 +√18 -√12)/(3-2) = a + b + √3

(3√3 -3√2 +√18 -√12)/1 = a + b + √3

3√3-√3 -3√2 +√18 -√12 = a+b

2√3 -3√2 + 3√2 - 2√3 = a + b

2√3 -2√3 +3√2 -3√2 = a +b

0 = a +b

a= -b

b= -a

 <marquee>

 \mathfrak{follow \: me}

Similar questions