Math, asked by menutabamenu, 7 months ago

find a and b if 3+ root 6 / root 3 + root 2 =a + b root 3​

Answers

Answered by goalsetter
0

Step-by-step explanation:

Here is the answer you were looking for:

\begin{gathered}\frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } = a + b \sqrt{6} \\\end{gathered}

3

2

3

+

2

=a+b

6

On rationalizing the denominator we get,

\begin{gathered}= \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \\ \\\end{gathered}

=

3

2

3

+

2

×

3

+

2

3

+

2

Using the identity :

\begin{gathered}{(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab \\ (a + b)(a - b) = {a}^{2} - {b}^{2}\end{gathered}

(a+b)

2

=a

2

+b

2

+2ab

(a+b)(a−b)=a

2

−b

2

\begin{gathered}= \frac{ {( \sqrt{3} })^{2} + {( \sqrt{2} )}^{2} + 2( \sqrt{3} )( \sqrt{2} )}{ {( \sqrt{3} )}^{2} - {( \sqrt{2} )}^{2} } \\ \\ = \frac{3 + 2 + 2 \sqrt{6} }{3 - 2} \\ \\ 5 + 2 \sqrt{6} = a + b \sqrt{6} \\ \\ a = 5 \: : \: b = 2\end{gathered}

=

(

3

)

2

−(

2

)

2

(

3

)

2

+(

2

)

2

+2(

3

)(

2

)

=

3−2

3+2+2

6

5+2

6

=a+b

6

a=5:b=2

Hope this helps!!

Similar questions