Math, asked by shravani2716, 11 months ago

Find a and b, if ( 5+√3 /5-√3) -(5 -√3/ 5+√3)=a+b√3
5-3
5+63​

Answers

Answered by ritu16829
3

Answer:

hey mate ❤️ ❤️

plz refer to pic

hope it works ❤️

plz mark it as brainliest answer

Attachments:
Answered by Anonymous
14

Question:

Find \:\: a \:\: and \:\: b \: \:if  \:;  \\  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  - \frac{5  -   \sqrt{3} }{5  +   \sqrt{3} } = a + b \sqrt{3} .

Answer:

a = 0 \\ b =  \frac{10}{11}

Note:

• (A+B)² = A² + B² + 2•A•B

• (A-B)² = A² + B² - 2•A•B

• (A+B)•(A-B) = A² - B²

• (A+B)² + (A-B)² = 2(A² + B²)

• (A+B)² - (A-B)² = 4•A•B

Solution:

 =  >  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  - \frac{5  -   \sqrt{3} }{5  +   \sqrt{3} } = a + b \sqrt{3}  \\  =  >  \frac{ {(5 +  \sqrt{3} })^{2} -  {(5 -  \sqrt{3}) }^{2}  }{(5 -  \sqrt{3})(5 +  \sqrt{3})  }  = a + b \sqrt{3}  \\   =  >  \frac{4 \times 5 \times  \sqrt{3} }{ {5}^{2} -  { (\sqrt{3}) }^{2}  }  = a + b \sqrt{3}  \\  =  > \frac{20 \sqrt{3} }{25 - 3}  = a + b \sqrt{3}  \\  =  >  \frac{20 \sqrt{3} }{22}  = a + b \sqrt{3}  \\  =  >  \frac{10 \sqrt{3} }{11}  = a + b \sqrt{3}  \\  =  > 0 +  \frac{10 \sqrt{3} }{11}  = a + b \sqrt{3} \\ \\ Now, \\Comparing \: both \: the \: sides ,\: we \: have ;\:  \\ a = 0 \: and \: b =  \frac{10}{11}

Similar questions