Math, asked by altamash8251, 10 months ago

Solve it
2y = (  {cot }^{ - 1}( \frac{ \sqrt{3}cosx + sinx }{cosx -  \sqrt{3}sinx }) {)}^{2}
where x belongs to(0, π/2), find dy/dx



Attachments:

Answers

Answered by rishu6845
6

Answer:

x \:    -  \:  \dfrac{\pi}{6}

Step-by-step explanation:

To find--->

derivative \: of \:

2y = ( \:  {cot}^{ - 1}( \dfrac{ \sqrt{3}cosx + sinx }{cosx \:  -  \sqrt{3}sinx }) \: ) ^{2}

Concept used ---->

1)

cos( \alpha  -  \beta ) = cos \alpha  \: cos \beta  \:  + sin \alpha  \: sin \beta

2)

 \sin( \alpha  -  \beta )  = sin \alpha  \: cos \beta  - cos \alpha  \: sin \beta

3)

 {cot}^{ - 1} cotx \:  = x

4)

 \dfrac{d}{dx}( x \:  ^{n} ) \:  = nx ^{n - 1}

Solution---->

2y \:  = (cot ^{ - 1} \: ( \dfrac{ \sqrt{3}cosx + sinx }{cosx -  \sqrt{3} sinx}) \: ) ^{2}

 =  > 2y = (  \:  \: {cot}^{ - 1} \:  \dfrac{ \dfrac{ \sqrt{3} }{2}cosx +  \dfrac{1}{2}sinx  }{ \dfrac{1}{2}cosx -  \dfrac{ \sqrt{3} }{2}sinx  } \:  \: ) ^{2}

 = ( \:  \:  {cot}^{1}  \:  \dfrac{cosx \: cos \dfrac{\pi}{6} + sinx \: sin \dfrac{\pi}{6}  }{sin \dfrac{\pi}{6} \: cosx - sinx \: cos \dfrac{\pi}{6} \:  \:    }  \:  \: ) ^{2}

 =  ( \:  \: {cot}^{ - 1}  \dfrac{cos( \dfrac{\pi}{6}  - x)}{sin( \dfrac{\pi}{6} - x) }  \:  \: ) ^{2}

 = ( {cot}^{ - 1} \: cot( \dfrac{\pi}{6} - x) \: ) ^{2}

 =  {( \:  \dfrac{\pi}{6} \:  - x  \: ) }^{2}

differentiating \: with \: respect \: to \: x

2 \dfrac{dy}{dx}  \: = \dfrac{d}{dx}  {( \dfrac{\pi}{6} - x) }^{2}

 = 2 \:  {( \dfrac{\pi}{6} - x) }^{2 - 1}  \dfrac{d}{dx} ( \dfrac{\pi}{6}  - x)

 \dfrac{dy}{dx}  =( \dfrac{\pi}{6}  - x) \: (0 - 1)

 \dfrac{dy}{dx}  = x -  \dfrac{\pi}{6}

Answered by Anonymous
2

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions