Math, asked by jagdishsoni, 1 year ago

find a and b if 7+√5/3+√5-7-√5/3-√5=a+√5b tell yrrr​

Answers

Answered by MaheswariS
0

Answer:

a=0 and b=-2

Step-by-step explanation:

\frac{7+\sqrt5}{3+\sqrt5}

=\frac{7+\sqrt5}{3+\sqrt5}*\frac{3-\sqrt5}{3-\sqrt5}

=\frac{(7+\sqrt5)(3-\sqrt5)}{3^2-{\sqrt5}^2}

=\frac{21-7\sqrt5+3\sqrt5-5}{9-5}

=\frac{16-4\sqrt5}{4}

=\frac{4(4-\sqrt5)}{4}

\frac{7+\sqrt5}{3+\sqrt5}=4-\sqrt5...................(1)

\frac{7-\sqrt5}{3-\sqrt5}

=\frac{7-\sqrt5}{3-\sqrt5}*\frac{3+\sqrt5}{3+\sqrt5}

=\frac{(7-\sqrt5)(3+\sqrt5)}{3^2-{\sqrt5}^2}

=\frac{21+7\sqrt5-3\sqrt5-5}{9-5}

=\frac{16+4\sqrt5}{4}

=\frac{4(4+\sqrt5)}{4}

\frac{7-\sqrt5}{3-\sqrt5}=4+\sqrt5................(2)

(1)-(2) gives

\frac{7+\sqrt5}{3+\sqrt5}-\frac{7-\sqrt5}{3-\sqrt5}=(4-\sqrt5)-(4+\sqrt5)

\implies\:\frac{7+\sqrt5}{3+\sqrt5}-\frac{7-\sqrt5}{3-\sqrt5}=4-\sqrt5-4-\sqrt5

\implies\:\frac{7+\sqrt5}{3+\sqrt5}-\frac{7-\sqrt5}{3-\sqrt5}=0-2\sqrt5

comparing with

\implies\:\frac{7+\sqrt5}{3+\sqrt5}-\frac{7-\sqrt5}{3-\sqrt5}=a+b\sqrt5

we get

a=0 and b=-2

Similar questions