find a and b if
(a+ib) (1+i)=2+i
Answers
Answered by
57
Therefore, a = 3/2 and b = -1/2
Hope, it'll help you.....
Answered by
2
Answer:
The values are a=\frac{3}{2}a=
2
3
and b=-\frac{1}{2}b=−
2
1
Step-by-step explanation:
Given : Expression (a+ib)(1+i)=2+i(a+ib)(1+i)=2+i
To find : The value of a and b ?
Solution :
Solve the expression LHS,
a(1+i)+ib(1+i)=2+ia(1+i)+ib(1+i)=2+i
a+ai+ib-b=2+ia+ai+ib−b=2+i
(a-b)+i(a+b)=2+i(a−b)+i(a+b)=2+i
Comparing LHS and RHS,
a-b=2a−b=2 ....(1) and a+b=1a+b=1 .....(2)
Solving these two equation by adding them,
a-b+a+b=2+1a−b+a+b=2+1
2a=32a=3
a=\frac{3}{2}a=
2
3
Substitute in equation (1),
\frac{3}{2}-b=2
2
3
−b=2
b=\frac{3}{2}-2b=
2
3
−2
b=-\frac{1}{2}b=−
2
1
Therefore, The values are a=\frac{3}{2}a=
2
3
and b=-\frac{1}{2}b=−
2
1
Similar questions