Find a and b such that 12, a + b , 2a, b are in AP.
Answers
Answered by
11
since the given terms are in A.P,
then
2(a+b)=12+2a,
2a+2b=12+2a,
2b=12,
then
b=6,
also
2×2a=a+b + b,
4a=a+6+6,
4a-a=12,
3a=12,
then
a=4
then
2(a+b)=12+2a,
2a+2b=12+2a,
2b=12,
then
b=6,
also
2×2a=a+b + b,
4a=a+6+6,
4a-a=12,
3a=12,
then
a=4
Answered by
1
Here is your answer. I hope it helps
a=12
a+d=a+b
a+2d=2a
a+3d=b
12+d=a+b
d=a+b-12 ------- (¡)
a+b+d=2a
a+b+(a+b-12)=2a
a+b+a+b-12=2a
2a+2b-12=2a
a+b-6=a
a-a+b=6
b=6 ------------(¡¡)
4th term= b=6
2a+d=b
2a+a+b-12=6
3a+6-12=6
3a-6=6
3a=12
a=12/3
a=4
A=4
B=6
✌️PLEASE MARK AS BRAINLIEST✌️
a=12
a+d=a+b
a+2d=2a
a+3d=b
12+d=a+b
d=a+b-12 ------- (¡)
a+b+d=2a
a+b+(a+b-12)=2a
a+b+a+b-12=2a
2a+2b-12=2a
a+b-6=a
a-a+b=6
b=6 ------------(¡¡)
4th term= b=6
2a+d=b
2a+a+b-12=6
3a+6-12=6
3a-6=6
3a=12
a=12/3
a=4
A=4
B=6
✌️PLEASE MARK AS BRAINLIEST✌️
Similar questions