Math, asked by vipinsingal77, 9 months ago

find a,b and c such that AP is ; a, 7, b, 23, c

Answers

Answered by ankitsunny
0

Step-by-step explanation:

please mark has brainliest answer

Attachments:
Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:a=-1}}}

\green{\tt{\therefore{Value\:of\:b=15}}}

\green{\tt{\therefore{Value\:of\:c=31}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A.P = a,7,b,23,c \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \: a = ? \\  \\ \tt:  \implies  Value \: of \: b = ? \\  \\ \tt:  \implies Value \: of \: c= ?

• According to given question :

 \tt\circ \:  a_{1}  = a \\  \\\tt\circ \:  a_{2}  = 7 \\  \\ \tt\circ \:  a_{3}  =b\\  \\\tt\circ \:  a_{4}  = 23 \\  \\ \tt\circ \:  a_{5}  = c\\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{3} -  a_{2} =  a_{4} -  a_{3} \\  \\  \tt:  \implies b - 7 = 23 - b \\  \\  \tt:  \implies 2b = 30 \\  \\   \green{\tt:  \implies b = 15} \\  \\  \bold{Similarly : } \\  \tt:  \implies  a_{2} -  a_{1} =  a_{3} -  a_{2} \\  \\  \tt: \implies 7 - a  = 15 - 7 \\  \\  \tt:  \implies a = 7 - 8 \\  \\   \green{\tt:  \implies a =  - 1} \\  \\  \bold{Similarly : } \\  \tt:  \implies  a_{4} -  a_{3} =   a_{5}  -  a_{4} \\  \\  \tt:  \implies23 - 15 = c - 23 \\  \\  \tt:  \implies c =8 + 23 \\  \\   \green{\tt:  \implies c = 31}

Similar questions