Math, asked by avanthikaavi8208, 9 months ago

Find a cubic polynomial whose zeros are 2,_√7 and√7.also verify the relationship between the zero and the coefficient of the polynomial

Answers

Answered by mysticd
1

 Let \: \alpha ,\beta \:and \:\gamma\: are

 zeroes \:of \: a \: cubic \: polynomial

 \alpha = 2, \: \beta = -\sqrt{7}\:and \:\gamma = \sqrt{7}

 The \: polynomial \:can \: be \: written \: as

 = (x - 2)(x+\sqrt{7})(x-\sqrt{7})

 = (x-2)[x^{2} - (\sqrt{7})^{2}]

 = (x-2)(x^{2}-7)

 = x^{3} - 7x - 2x^{2} + 14

 \green {= x^{3}-2x^{2} - 7x + 14 }

Verification :

 i) \alpha + \beta + \gamma

 = 2 - \sqrt{7} + \sqrt{7}

 = 2

 = \frac{2}{1}

 = \frac{- x^{2} \: coefficient }{x^{3} \: coefficient }

 ii) \alpha \beta + \beta \gamma+\alpha  \gamma

 = 2\times (-\sqrt{7}) + (-\sqrt{7})(\sqrt{7}) + (\sqrt{7}) \times 2

 = -2\sqrt{7} - 7 + 2\sqrt{7}

 = -7

 = \frac{-7}{1}

 = \frac{x \: coefficient }{x^{3} \: coefficient }

 iii) \alpha \beta \gamma

 = 2 \times (- \sqrt{7} )(\sqrt{7})

 = 2 \times (-7)

 = \frac{-14}{1}

 = \frac{- constant \:term}{x^{3} \: coefficient }

•••♪

Similar questions