Find a if a+1/a=23
pls.......
Answers
Answer:
The value of \bold{a+\frac{1}{a}}a+
a
1
is 5.
Step-by-step explanation:
Given a^{2}+\frac{1}{a^{2}}=23a
2
+
a
2
1
=23
We know that by formula, \bold{(a+b)^{2}=a^{2}+b^{2}+2 \times a \times b}(a+b)
2
=a
2
+b
2
+2×a×b
Bring a^{2}+\frac{1}{a^{2}}a
2
+
a
2
1
in the above format, hence the equation becomes,
\begin{gathered}\begin{aligned}\left(a+\frac{1}{a}\right)^{2} &=a^{2}+\frac{1}{a^{2}}+2 \times a^{2} \times \frac{1}{a^{2}} \\\left(a+\frac{1}{a}\right)^{2} &=23+2 \end{aligned}\end{gathered}
(a+
a
1
)
2
(a+
a
1
)
2
=a
2
+
a
2
1
+2×a
2
×
a
2
1
=23+2
Hence \bold{\left(a+\frac{1}{a}\right)^{2}=25}(a+
a
1
)
2
=25
Now by taking square root on both sides, the equation becomes,
\bold{a+\frac{1}{a}=5}a+
a
1
=5
Step-by-step explanation:
hope it helps you
Answer:
a will be √23a-1
Step-by-step explanation:
a + 1/a=23
»a^2+1/a=23
»a^2+1=23a
»a^2=23a-1
»a= √23a-1
hope this will help you.....