Find A if tan 2A = cot (A – 24o)
Answers
Answered by
7
given : tan 2A = cot ( A - 24)
cot(90-2A)=cot(A-24)
since cot(90- θ)=Tan θ
90-2A= A-24
90+24=A+2A
114= 3A
A= 114/3= 38
therefore A=38
Answered by
4
answer : A = 38°
we know, tanx = cot(90° - x)
so, tan2A = cot(90° - 2A) ........(1)
now, tan2A = cot(A - 24°)
from equation (1),
cot(90° - 2A) = cot(A - 24°)
or, 90° - 2A = A - 24°
or, 90° + 24° = 2A + A = 3A
or, 114° = 3A
or, A = 38°
hence, value of A = 38°
Similar questions