Find a if the slope of tangent to the curve y= ax²+b at (½,0) is -1.
Answers
Answered by
0
Step-by-step explanation:
xy+ax+by=2 ----- ( 1 )
On differentiating both sides w.r.t. x, we get
x
dx
dy
+y+a+b
dx
dy
=0
⇒
dx
dy
(x+b)=−a−y
⇒
dx
dy
=
x+b
−a−y
Now,
The slope of the tangent =2
(
dx
dy
)
(1,1)
=2
⇒
1+b
−a−1
=2
⇒ −a−1=2+2b
⇒ −a=3+2b
⇒ a=−(3+2b)
On substituting a=−(3+2b),x=1 and y=1 in equation ( 1 ), we get
⇒ 1−(3+2b)+b=2
⇒ 1−3−2b+b=2
⇒ b=−4
And
⇒ a=−(3+2b)=−(3−8)=5
∴ a=5 and b=−4
Similar questions
Math,
4 months ago
Math,
10 months ago
Physics,
10 months ago
Environmental Sciences,
1 year ago
Math,
1 year ago