find a number such that when 7 is subtracted from 3 times the number the result is 9 more than twice
Answers
Answered by
1
Answer:
Let the number be x.
Then according to the problem,
5x−5=2x+4
or, 3x=9
or,x=3.
So the number is 3.
Answered by
2
Answer:
The required number is 16.
Step-by-step explanation:
Algebraic expression:
- A polynomial which contains variables, coefficients and constants joined together using mathematical operations such as addition, subtraction, multiplication and division is called as algebraic expression.
Algebraic equation:
- An algebraic equation is a mathematical statement that contains two equated algebraic expression.
- The general form of algebraic equation is P=0 or P=Q where P and Q are polynomials.
Let the number be x.
- 3 times the number is 3x.
- 7 is subtracted from the product is 3x-7.
- twice of number is 2x.
- 9 more than twice of number is 2x+9.
As per the given condition,
when 7 is subtracted from 3 times the number the result is 9 more than twice of the number.
mathematically it can be expressed as
3x-7 = 2x+9
3x-2x = 9+7
x = 16
Hence, the required number is 16.
Know more about Solving Algebraic equations:
brainly.in/question/21098904?referrer=searchResults
brainly.in/question/48534636?referrer=searchResults
Similar questions