Math, asked by pranavalmale, 3 months ago

find a quadratic equations whose zeroes are 1 by 4 and -1​

Answers

Answered by SparklingBoy
24

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

༒ Given :-

For a Quadratic Equation

1st Zero = α = 1/4

2nd Zero = β = -1

___________________________

༒ To Find :-

The Quadratic Equation

___________________________

༒ Key Point :-

If sum and product of zeros of any quadratic equation are s and p respectively,

Then,

The quadratic equation is given by :-

 \bf  {x}^{2}  - s \: x + p=0

___________________________

༒ Solution :-

Sum of Zeros = α + β

 \sf =  \frac{1}{4}  + ( - 1) \\  \\  \sf =  \frac{1}{4}  - 1 \\  \\  =  \sf \frac{ - 3}{4}

Product of Zeros = αβ

 =  \sf \frac{1}{4} ( - 1) \\  \\  \sf =  \frac{ - 1}{4}

So,

Sum = s = -3/4

and

Product = p = -1/4

So,

Required Equation should be

 \sf {x}^{2}  +  \frac{3}{4} x -  \frac{1}{4}  = 0 \\   \\     \large\purple{ \underline {\boxed{\bf 4 {x}^{2}  + 3x - 1 = 0}}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
6

\blue{ \fcolorbox{purpLe}{black}{ \boxed{ \orange{ \star}{ \bold{\: Answer }\orange{\star}}}}}

Sum of Zeros = α + β

</p><p>\begin{gathered} \sf = \frac{1}{4} + ( - 1) \\ \\ \sf = \frac{1}{4} - 1 \\ \\ = \sf \frac{ - 3}{4} \end{gathered}

Product of Zeros = αβ

\begin{gathered} = \sf \frac{1}{4} ( - 1) \\ \\ \sf = \frac{ - 1}{4} \end{gathered}

So,

Sum = s = -3/4

and

Product = p = -1/4

So,

Required Equation should be

\begin{gathered} \sf {x}^{2} + \frac{3}{4} x - \frac{1}{4} = 0 \\ \\\large\purple{ \underline {\boxed{\bf 4 {x}^{2} + 3x - 1 = 0}}}\end{gathered} </p><p>

Similar questions