Math, asked by mehak5783, 2 months ago

Find a quadratic polinomial the sum and product are 1 and 1 respectively

Answers

Answered by vermashiva451
0

Step-by-step explanation:

x²-(sum of zeroes)x+product of zeroes

x²-x+1

Answered by Anonymous
30

Answer:

Given :-

  • The sum and product of a quadratic polynomial are 1 and 1 respectively.

To Find :-

  • What is the quadratic polynomial.

Formula Used :-

\clubsuit Quadratic Equation Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots)}}}

Solution :-

Given :

\bigstar\: \: \bf{Sum\: of\: roots\: (\alpha + \beta) =\: 1}

\bigstar\: \: \bf{Product\: of\: roots: (\alpha\beta) =\: 1}

According to the question by using the formula we get,

\small\leadsto \sf\bold{\green{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots)}}

\small\longrightarrow \bf{x^2 - (\alpha + \beta)x + (\alpha\beta)}

\small\longrightarrow \sf x^2 - (1)x + 1

\small\longrightarrow \sf\bold{\red{x^2 - x + 1}}

{\small{\bold{\underline{\therefore\: The\: required\: quadratic\: polynomial\: is\: x^2 - x + 1\: .}}}}

Similar questions